The Relationship between Transmembrane Mucins, Ion Channels and PDZ Adaptor Proteins in the Small Intestine
نویسنده
چکیده
To my beloved family. AbstrAct The human body is continuously exposed to challenges from the surrounding world. In analogy with the skin, mucus is a well-organized and highly regulated barrier composed of polymeric and O-glycosylated mucins that protects luminal organs such as the gastrointestinal tracts from the outer milieu. As part of a first defensive barrier, the secreted mucins entrap pathogens and act as a network for antiseptic enzymes and proteins. A second barrier is the dense glycocalyx which is composed of transmembrane mucins anchored to the apical membrane of cells. The focus of this thesis was to identify novel interactions between transmembrane mucins and cytoplasmic PDZ adaptor proteins and to determine the role of these interactions in mucin expression and regulation. Furthermore, the interplay between transmembrane mucins and ion channels expressed in the small intestine was explored. Finally, the stability of the SEA domain in transmembrane mucins was assessed. Using different techniques in molecular biology and confocal imaging, this thesis proves that the transmembrane mucins MUC3 and MUC17 bind to PDZ adaptor proteins that are interaction partners for two intestinal ion channels, namely CFTR and NHE3. Specifically, MUC17 is retained in the apical surface of enterocytes by PDZK1. In analogy with acute Ca 2+-mediated regulation of NHE3 and CFTR, the cholinergic agonist carbachol induces endocytosis of MUC17, concomitant with NHE3 internalization and CFTR recruitment to the cell surface. This thesis also demonstrates that the expression of MUC3 is counter-regulated by CFTR via a trans-Golgi-resident PDZ adaptor protein called GOPC. Finally, using atomic force microscopy, it is demonstrated that the SEA domain of transmembrane mucins protects the apical cell membrane by acting as a breaking point upon mechanical stress. In summary, the results from this thesis deliver new evidence regarding the relationship between transmembrane mucins and ion channels. These novel networks cast light on important cellular processes, involving the formation of physical barriers coupled to fluid and mucin secretion, that occur in response to native and foreign provocations. (2008) the c-terminus of the transmembrane mucin MUc17 binds to the scaffold protein PDZK1 that stably localizes it to the enterocyte apical membrane in the small intestine. Biochem. cFtr anion channel modulates expression of human transmembrane mucin MUc3 through the PDZ protein GOPc. Unfolding dynamics of the mucin sEA domain probed by force spectroscopy suggest that it acts as a cell protective device Submitted.induced internalization of human transmembrane MUc17 mucin is concomitant …
منابع مشابه
CFTR anion channel modulates expression of human transmembrane mucin MUC3 through the PDZ protein GOPC.
The transmembrane mucins in the enterocyte are type 1 transmembrane proteins with long and rigid mucin domains, rich in proline, threonine and serine residues that carry numerous O-glycans. Three of these mucins, MUC3, MUC12 and MUC17 are unique in harboring C-terminal class I PDZ motifs, making them suitable ligands for PDZ proteins. A screening of 123 different human PDZ domains for binding t...
متن کاملCarbachol-induced MUC17 endocytosis is concomitant with NHE3 internalization and CFTR membrane recruitment in enterocytes.
We have reported that transmembrane mucin MUC17 binds PDZ protein PDZK1, which retains MUC17 apically in enterocytes. MUC17 and transmembrane mucins MUC3 and MUC12 are suggested to build the enterocyte apical glycocalyx. Carbachol (CCh) stimulation of the small intestine results in gel-forming mucin secretion from goblet cells, something that requires adjacent enterocytes to secrete chloride an...
متن کاملThe C-terminus of the transmembrane mucin MUC17 binds to the scaffold protein PDZK1 that stably localizes it to the enterocyte apical membrane in the small intestine.
The membrane-bound mucins have a heavily O-glycosylated extracellular domain, a single-pass membrane domain and a short cytoplasmic tail. Three of the membrane-bound mucins,MUC3, MUC12 and MUC17, are clustered on chromosome 7 and found in the gastrointestinal tract. These mucins have C-terminal sequences typical of PDZ-domain-binding proteins. To identify PDZ proteins that are able to interact ...
متن کاملPdz-based Adaptor Proteins in Epi- Thelial Tight Junctions
Polarized protein deposition at the apical and basolateral membranes of epithelial cells is critical for the asymmetrical transport of ions and fluids across the epithelia. PDZ-based modular adaptor proteins are expressed in the junctional areas in epithelial cells and are generally part of a molecular scaffold that determines the localization and activity of ion channels, receptors, and other ...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012